

Long term ecological research in the European Alps to uncover effects of Global Change (especially climate change and biological invasions) Prof. Dr. Ingolf Kühn

Ingolf.kuehn@ufz.de

Integrated European Long-Term Ecosystem, critical zone & socio-ecological Research

2018→ ESFRI Roadmap 2020→ EU Preparatory Phase Project 2020→ EU Advanced Community Project

"Whole System"-approach & cross-disciplinarity

eLTER

Example for eLTER Site design, activities and co-location

Observed and investigated:

- System structure & functions
- Main drivers of change
- Interactions of slow/fast disturbance effects

Overview of long term research sites in the Alps.

LTSER Platform Tyrolian Alps

•

San Mari

OZCAR-RI CRYOBSCLIM

LTSER Zone Atelier Alpes View record on DEIMS-SDR^[2] Download site information [.json] Show more details ...

> https://deims.org/map/# (Dynamic Ecological Information Management System - Site and dataset registry -)

eLTER

LTSER Platform Eisenwurzen

Meta-analysis of long-term biodiversity trends in Europe

eLTER

Pilotto, Kühn et al. 2020, Nature Communications 11: 3486.

Accelerated increase in plant species richness on mountain summits is linked to warming

= 0.61

20

Longitude (deg.)

-10

Steinbauer et al. 2018, *Nature* 556: 231-234

High altitude habitats suffer from Climate Change (CC) while low altitude habitats may benefit

High altitude habitats suffer from Climate Change (CC) while low altitude habitats may benefit

Engler et al. 2011, Global Change Biology 17: 2330-2341.

High altitude habitats suffer from Climate Change (CC) while low altitude habitats may benefit

Engler et al. 2011, Global Change Biology 17: 2330-2341.

Shift of vegetation belts in the future?

Shift of vegetation belts in the future?

Baatar et al. 2019, Basic Appl Ecol 38: 23-35. See also Pompe et al. 2010, Basic Appl Ecol 11: 603-611

→ Species co-occurrence in Alpine communities and their areas decrease

Shift of vegetation belts in the future?

- Neither belts, nor communities or species shift!
- Individuals disperse
- → Change in community composition
- → Future communitites may look different

Modelling species co-occurrence under Climate Change

Baatar et al. 2019, Basic Appl Ecol 38: 23-35. See also Pompe et al. 2010, Basic Appl Ecol 11: 603-611

→ Species co-occurrence in Alpine communities and their areas decrease

Can topographically controlled thermal-habitat differentiation buffers against climate warming?

Day time \rightarrow heterogeneity Night time ~ homogenous

Complex interplay of micro, meso and macro climate on species performance and species interactions

→ long-term cross-scale studies needed

Biological invasions & costs

- *Alien* species are (accidentally or deliberately) *introduced* by humans
- Invasive are alien species that cause ecological or economic harm
- Ecological impacts on biodiversity
 and ecosystem functions
- Economic costs are enormous: > €12.5 billion/year (Kettunen et al. 2008)

Alien species richness decreases with altitude, but...

Dainese, Kühn, Bragazza 2014, Biol Inv 16: 815-831

- Holarctic species can invade higher altitudes,
- While tropical species remain in the lowlands
- \rightarrow With CC more alien species moving upslope

Factors affecting mountain plant invasions and pathways

Pauchard et al. 2008, Front Ecol Env 7: 479-486

© Markus Golletz, CC BY-SA 3.0, commons.wikimedia.org/w/index.php?curid=16436788

Global change impacts biodiversity

Driver	Trend	Effect on biodiversity
Climate Change	7	7
Biological Invasions	7	2
Land Use/ Management:		
Intensification	?	2
Abandonment	~	2
Forest area	7	?

Kerckhof et al. 2016, Springerplus 5: 485

Long-term observations are crucial!

- Detect Trends
- Attribute Trends
- Disentangle complexities (resolution, extent, climate, land use, ...)
- Interactions with humans
- Derive management recommendations

We are currently just at the beginning!

Thank you very much for your attention

Disproportional risk for habitat loss of high-altitude endemic species under climate change

Severe Climate Change Scenario

Dirnböck, Essl, Rabitsch (2011) Global Change Biology 17: 990-996.

The upward range shift of plants averaging 6.1 m per decade in altitude (IPBES 2018)

Population dynamics may lag behind climatic changes (Dullinger *et al.* 2012, *Nature Climate Change* 2: 619-622.

