Studies on adaptation capacity of Carpathian ecosystems/landscape to climate change

Science for the Carpathians
CARPATHIAN CONVENTION COP5
Lillafüred, 10.10.2017 - 12.10.2017

Marcel Mîndrescu, Anita Bokwa
The CARPATCLIM project

- Climate Atlas of the Carpathian Region www.carpatclim-eu.org
- 16 meteorological variables

- 10 selected variables:
 - minimum, mean, and maximum temperature,
 - daily temperature range,
 - precipitation,
 - cloud cover,
 - relative sunshine duration,
 - relative humidity,
 - surface air pressure, and
 - wind speed at 2m.
✓ Temperature ↑ in every season
 ✓ in particular in the last three decades, confirming the trends in Europe;

✓ Wind speed ↓ in every season;

✓ Cloud cover and relative humidity ↓ in spring, summer, and winter, and ↑ in autumn,

✓ Relative sunshine duration behaved in the opposite way;

✓ Precipitation and surface air pressure showed no significant trend, though they ↑ slightly on an annual basis.

*positive and negative sunshine duration anomalies are highly correlated to the corresponding temperature anomalies during the global dimming (1960s and 1970s) and brightening (1990s and 2000s) periods.
Spatial distribution of the climatological (red) and precipitation only stations (blue)

Spinoni et al., 2014
The average cloud cover (CC) is lower in summer than in winter. In summer, CC is high on mountain peaks (up to 7.2 tenths) and low in plains (down to 3.6 tenths), while in winter the situation is reversed.

Spinoni et al., 2014
The average *cloud cover* (CC) is lower in summer than in winter.

In summer, CC is *high on mountain peaks* (up to 7.2 tenths) and *low in plains* (down to 3.6 tenths), while in winter the situation is reversed.

Spinoni et al., 2014
The relative sunshine duration (RS) behaves conversely to CC.

Spinoni et al., 2014
The rainy season lasts from May to July.
In every season, there is more precipitation over the mountains than in the plains.
 - (up to 1650mm in the Ukrainian Carpathians and in the Tatra Mountains)
The lowest annual precipitation totals occurs in eastern Hungary (550 mm), the lowest summer totals in Serbia (80 mm), and the lowest winter totals in northern Romania (70 mm).
The rainy season lasts from May to July.
In every season, there is more precipitation over the mountains than in the plains.
- (up to 1650mm in the Ukrainian Carpathians and in the Tatra Mountains)
The lowest annual precipitation totals occur in eastern Hungary (550 mm), the lowest summer totals in Serbia (80 mm), and the lowest winter totals in northern Romania (70 mm).

The rainy season lasts from May to July.

In every season, there is more precipitation over the mountains than in the plains.

(up to 1650mm in the Ukrainian Carpathians and in the Tatra Mountains)

The lowest annual precipitation totals occur in eastern Hungary (550 mm), the lowest summer totals in Serbia (80 mm), and the lowest winter totals in northern Romania (70 mm).
The relative humidity (RH) is highest above 1500m (excluding the Tatra Mountains), while RH is lowest in northern Hungary, Hungarian Plain, and Serbia (70–75%).

On average, April shows the lowest RH (70.8%) and December the highest RH (85.6%).

Spinoni et al., 2014
Wind speed at 2m

period 1961–2010

- The Carpathian Region shows low average wind speed at 2m (WS) (0.7–2.5 ms), excluding the mountain peaks, where the wind blows up to 12–13 ms in winter.
- On average, the windiest month is April (RH is conversely the lowest) and August the calmest.

Spinoni et al., 2014
The Carpathian Region shows low average wind speed at 2m (WS) (0.7–2.5 ms\(^{-1}\)), excluding the mountain peaks, where the wind blows up to 12–13 ms\(^{-1}\) in winter.

On average, the windiest month is April (RH is conversely the lowest) and August the calmest.

Spinoni et al., 2014
The *surface air pressure (PA)* ranges from 680 to 1040 mbar. It strongly depends on elevation but no other geographical patterns. The average PA is *generally lower in summer (rainy season) than winter.*

Spinoni et al., 2014
• **Mean temperature (TM)** mainly depends on elevation and follows an annual cycle
• The **hottest area is the south-eastern corner of the region, in Romania.**

Spinoni et al., 2014
Mean temperature
period 1961–2010

- **Mean temperature (TM)** mainly depends on elevation and follows an annual cycle
- The **hottest area is the south-eastern corner of the region, in Romania.**

Spinoni et al., 2014
ROMANIA

- Six meteorological variables tested for trends at annual scale (1961-2013)

Results: significant climatic changes at annual scale in Romania.

- **Air temperature** - **↑** at all stations.
- **Sunshine hours** - **↑** at most stations
 - except in the mountainous regions of Southern and Curvature Carpathians
- **Wind speed** - significantly **↓**
 - overall tendency of terrestrial stilling
- **The annual precipitation** - rather stable
 - increasing in North-Western Romania
 - decreasing in the Danube Delta
- **Cloud cover** - generally **↓**
- **Relative humidity** - mixed trends.

Marin et al., 2014
ROMANIA: Annual trends (1961-2013)
ROMANIA: Annual trends (1961-2013)

Sunshine

Cloud cover
ROMANIA: Annual trends (1961-2013)
Romania: Number of Heat Weaves (1961-2010)

Legend

- ▲ Increasing trend (Sig.)
- ▲ Increasing trend
- ▼ Decreasing trend

0 125 250 375 500 Km

Piticari&Ristoiu, 2013
Examples of current research issues

Extreme precipitation in the Polish Carpathians, 1881–2010

- monthly totals of precipitation
- 18 stations
- Anomally Heavy Precipitation (AHP)

Twardosz et al. 2016
Conclusions:

- most AHP spatially limited to 1-2 stations (typically neighbouring)
- local conditions, as well as circulation-related factors, influenced their occurrence
- May - largest area coverage (5 stations on average)
 - May 1940 and May 2010 recorded at all stations
 - both triggered catastrophic floods
- November - smallest coverage (2 stations on average)

Twardosz et al. 2016
The study of vegetation dynamics based on fossil records
- Clarifying aspects from the past, building scenarios for the future

Carpathian Mountains - major biodiversity area, with “hotspots”
- Refuge for various taxa during the Pleistocene glaciations

Aim: establish general and particular traits of forest evolution
- study area: Carpathian region
- time frame: the last glaciation (interval Middle-Upper Pleniglacial – Preboreal)

Paleoclimate variability studies in the Carpathian region

- Analyzed the records of **pollen, plant macrofossils and charcoal**
- Selected sites from the Carpathian area
- Result: preliminary database of **250 sites**
- **18 arboreal taxa**
- Distribution maps for each of these taxa in the selected time intervals

Farcas et al., 2017

Tab. 1. Sites location corresponding to the selected periods

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Carpathian Region</th>
<th>Pleniglacial</th>
<th>Last Glacial Maximum</th>
<th>Late Glacial</th>
<th>Preboreal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Czech Republic</td>
<td>12</td>
<td>4</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Slovakia</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Poland</td>
<td>34</td>
<td>6</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Ukraine</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Hungary</td>
<td>14</td>
<td>11</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Romania</td>
<td>10</td>
<td>3</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>Serbia</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
The diversity of relief and dynamic interplay between North Atlantic, continental, and Mediterranean atmospheric circulation patterns that characterize the Carpathian–Balkan region are clearly reflected in the extreme habitat fragmentation and exceptional biodiversity.

Past environmental dynamics are significantly understudied, although these characteristics currently feature as key topics in conservation policies, land-use management and sustainability.

The region, and particularly the Carpathian area is often pictured as a blank-spot in regional climate reconstructions, although new palaeoclimatic records are continuously being reported.

A denser network of records sustained by multi-proxy investigations is needed for improving knowledge in the field of past and current climate change research, biodiversity patterns and dynamics, or human spread and related cultural–technological interchanges.
Central Eastern Europe (CEE) lies at the *(climatic) transition between* Western Europe and the large continental mass extending beyond the Carpathian range.

The Carpathian range act as a boundary between the *two major climatic influences acting within the European continent*.

The diversity of landforms, particularly of those with glacial, periglacial or paraglacial origins, and underground cavities (e.g., caves and caves with lakes), provide *opportunities for palaeoclimate and palaeoenvironment reconstructions*.

Prior to the last two decades, the CEE was *largely unrepresented in large data reviews*.

More recently, as new palaeoclimatic records are continuously being generated, the area is no longer a blank spot in climate reconstructions.

Lake sediment and glacial deposits-based palaeoclimatic research in the region has been aided by the publication of two databases comprising all glacial lakes and glacial cirques from the Romanian Carpathians (Mîndrescu, 2016; Mîndrescu et al., 2016a).
Key messages

❖ **Protect our Carpathians environment.** Climate change threatens the European protected areas and in the Carpathians there are many natural conservation areas and ‘vulnerable’ eco-regions. Carpathian environment can not be considered an economical target.

❖ **Protect our Carpathians forests and their biodiversity** for ecosystem services. **Acting more for reforestations.** Though the conservation of mountain areas is well maintained in the Carpathians and forests there have enlarged since the end of the World War II, they are subject to air pollution and other threats linked with climate change.

❖ **Encourage people to live in the Carpathians** region and to mentaian and preserve their traditional way to live (which is not harmfull for the environment).

❖ **Better management of the resources** in the Carpathians especially for water, soil, forest and pasture. Water scarcity and climatic extreme events (e. g. extrem winds, cold and warm waves etc.) would be a problem in the future.