Tools for transboundary wildlife monitoring on Movebank

Sarah C. Davidson

Data Curator

The Ohio State University

Max Planck Institute for Ornithology

Large Carnivores Workshop

5th Conference of the Forum Carpaticum

Eger, Hungary

15 October, 2018

Movebank is a global database

for animal movement data

and a too

for working with data throughout its life cycle.

DATABASE

FUNDING

Long term

Max Planck Society

University of Konstanz

Current grants
German Aerospace Center (DLR)
U.S. National Aeronautics and
Space Administration (NASA)
U.S. National Science Foundation

Previous grants

German Science Foundation

NASA

U.S. National Science Foundation

Individual animal tracks and related attributes

Individual animal tracks and related attributes

Tracking methods

GPS

Argos Doppler Shift

Radio transmitter

Solar geolocator

Bird ring

Natural mark

Individual animal tracks and related attributes

Tracking methods

Other bio-logging sensors

Accelerometer

Barometer

Light levels

Magnetometer

Temperature

Individual animal tracks and related attributes

Tracking methods

Other bio-logging sensors

Animal, tag, and deployment info

You retain ownership and control access.

Data Managers (read-write)

Collaborators (read only)

Public

IMPORT DATA

Supported or custom CSV

date	time	long	lat	See S		individua	al name	speed	heading	height	visible
2008-12-18	12:21:19.001	8.9858828	47.7382944	Aythya feri	na 420	Common	Pochard F	73	347.34	438.5	TRUE
2008-12-18	12:30:22.999	8.9857864	47.7382972	Aythya feri	na 420	Common	Pochard F	22	33.42	441	TRUE
2008-12-18	13:01:38.001	8.9859685	47.7378514	Aythya ferin	na 420	Common	Pochard F	97	191.37	441.7	TRUE
2008-12-18	13:30:12.000	8.9855835	47.738281	Aythya ferir	na 420	Common	Pochard F	12	351.93	442.4	TRUE
2008-12-18	14:01:25.998	8.985615	47.7382313	Aythya feri	na 420	Common	Pochard F	86	348	449.6	TRUE
2008-12-18	14:30:23.999	8.9857624	47.73807	Aythya feri	na 420	Common	Pochard F	23	336.86	453.1	TRUE
Map other	_	10 ho	nt.	://	< a.	10 t	ha	1 of			
How	Mol							dati			
How	_					'e t Long ∷	he c	lat		8	
How	Mo\ e	mp g		on Lat 💥 L		Long 💥		Ж	Tag Id 3	8	
How Sensor Type	Mo	mp 3	Location	on Lat 💥 L 2944 8	ocation	Long 💥	Animal Id		Tag Id 3	8	
How Sensor Type GPS	7 Timestai 2008-12- 2008-12-	mp 3 -18 12:21:19 -18 12:30:22	001 47.738	on Lat % L 2944 8 2972 8	ocation	Long 💥 8 4	Animal Id	% ochard F ochard F	Tag Id 3 420 420	8	
Sensor Type GPS GPS	2008-12- 2008-12- 2008-12- 2008-12- 2008-12-	mp 3 -18 12:21:19 -18 12:30:22 -18 13:01:38 -18 13:30:12	001 47.738 999 47.738 001 47.737 47.738	on Lat % L 2944 8 2972 8 8514 8 281 8	ocation .985882 .985786	Long 💥 8 4 5	Animal Id Common Po	ochard F ochard F ochard F	Tag Id 3 420 420 420	8	
Sensor Type GPS GPS GPS	2008-12- 2008-12- 2008-12- 2008-12- 2008-12-	mp 3 -18 12:21:19 -18 12:30:22 -18 13:01:38 -18 13:30:12	001 47.738 999 47.738 001 47.737	on Lat % L 2944 8 2972 8 8514 8 281 8	.985882 .985786 .985968	Long 💥 8 4 5	Animal Id Common Po Common Po Common Po	ochard F ochard F ochard F ochard F	Tag Id 3 420 420 420 420	8	

DATA FEEDS

Argos GPS-PTTs: Microwave, GeoTrak (coming next: Lotek)

Argos DIAG: all PTTs

Argos telnet subscription
Program ID User Password Test connection
Get all data for selected program Download data only for following PTTs
Known PTTs
✓ Download DIAG data ✓ Import Argos Doppler locations Configure Argos filtering
✓ Download DS data ✓ Import / Decode Microwave GPS data
● All data For following PTTs
Known PTTs
☐ Import / Decode North Star / GeoTrak GPS data
Finish Cancel

DATA FEEDS

Argos

GSM-GPS: CTT, Ecotone, e-obs, Druid, Fleetronic, Followlt Wildlife, madebytheo, Microwave, MoveTech, Ornitela

Iridium-GPS: Followit Wildlife

Manage live feed: CT	TGSM			
Provider Feed subscriber Feed activity Feed elements:		T GSM chmoe (Joseph Schmoe) on Off		
Tag ID	Data points	Last import	Status	Add/Remove Tags
89014103256540803045	2184	Thu May 15 10:20:34 GMT-400 2014	OK	
89014103256540803078	2964	Thu May 15 10:20:30 GMT-400 2014	OK	Refresh
89014103256345345796	6484	Wed May 21 08:37:45 GMT-400 2014	OK	•
89014103256345345804	5313	Wed May 21 08:40:03 GMT-400 2014	OK	
Close New Delete)			

DATA FEEDS

COLLECT

Argos

GSM-GPS

Iridium-GPS

Coming soon: ICARUS

EMAIL NOTIFICATIONS

COLLECT

Argos

GSM-GPS

Iridium-GPS

ICARUS

MAPPING

MANAGE

DEPLOYMENTS

QC & OUTLIERS

Show/Hide Columns

MANAGE

Study Tsavo Lion Study Sensor Type GPS

Animal Kiboche

Display Options

Cancel

Timestamp	Location Lat	Location Long	Manuali	y Marked Outlier		
2005-10-17 00:00:54	-3.788	38.873			-	
2005-10-17 04:00:53	-3.810	38.928			T≡	
2005-10-17 08:00:48	-3.809	38.928				
2005-10-17 18:00:47	-3.807	38.927				
2005-10-18 00:00:54	-3.793	38.932				
2005-10-18 06:00:54	-3.783	38.941				
2005-10-18 18:01:24	-3.776	38.953				
2005-10-19 00:00:48	-3.780	38.947				
2005-10-19 06:02:23	-3.784	38.933				
2005-10-19 12:02:10	-3.500	39.411	true	Edit Attailers	- 6	
2005-10-19 18:00:54	-3.784	38.931		Edit Attribute		
2005-10-20 00:00:48	-3.807	38.921				
2005-10-20 06:00:41	-3.809	38.922		False		
2005-10-20 12:01:11	-3.812	38.924		○ Not Set		
2005-10-20 18:02:40	-3.808	38.941				
2005-10-21 00:02:59	-3.808	38.940				
2005-10-21 06:02:14	-3.836	38.983				
2005-10-22 00:00:53	-3.840	39.010				
2005-10-22 06:01:35	-3.835	38.956				
2005-10-22 18:01:42	-3.842	38.946				
2005-10-23 00:01:18	-3.843	38.891				
2005-10-23 06:03:04	-3.825	38.897				
2005-10-23 12:01:48	-3.825	38.897				
2005-10-23 18:00:50	-3.802	38.944				
2005-10-24 00:00:53	-3.779	38.970			-	

QC & OUTLIERS

MANAGE

Data filters

Argos

Duplicate

Value Range

Speed

he filter will flag records for wh	
Available Attributes	Key Attributes
Location Long Location Lat Eobs Battery Voltage Heading	Tag Id Timestamp
Filter by value range	
_	match the ranges provided, and flag records outside the ranges.
Keep null values	Remove null values
Match all of the following (Match any of the following
Location Error Numerical	\$ < \$ 30 Add
Remove All Filters	
✓ Filter by speed (experimenta)	1)
✓ Filter by speed (experimenta Read about speed filter algorith	
Read about speed filter algorith	ms
Read about speed filter algorith	ms
Read about speed filter algorith Max. plausible speed (m/s):	ms 35

FILE CONVERSION

ANALYZE

Download tracking data
Available Sensor Types
✓ Filter by date
From: yyyy-MM-di select interval 🗘
To: yyyy-MM-d
Csv
Excel 97 GoogleEarth (Tracks)
Excel 2007 GoogleEarth (Home Range)
☐ Include undeployed locations ⊘
☐ Include points marked as outliers
Add UTM coordinates
Add study local time
Download Close

API & SOFTWARE

ANALYZE

R package and Shiny web app "ctmm"

PUBLIC OUTREACH

SHARE

ENV-DATA

Environmental Data Automated Track Annotation System

Link animal movement data to global environmental datasets

Annotate generic time-location records or areas

ENV-DATA

COLLECT

75 products, 586 variables

Topography

Weather and climate

Surface temperature, vegetation, fire, land cover

Ocean surface conditions

Demographics

GlobCover land cover, 2009

ENV-DATA

User interface to browse and select variables

Access files from providers

Transform formats/projections

Interpolate values

Provide results and documentation

MOVEBANK DATA REPOSITORY

Datasets are reviewed, published and receive a DOI.

MOVEBANK DATA REPOSITORY

Datasets are reviewed, published and receive a DOI.

Data from: Costs of migratory decisions: a comparison across eight white stork populations

When using this dataset, please cite the original article.

Flack A, Fiedler W, Blas J, Pokrovski I, Kaatz M, Mitropolsky M, Aghababyan K, Fakriadis Y, Makrigianni E, Jerzak L, Shamina Flack A, Fiedler W, Blas J, Pokrovski I, Kaatz M, Mitropolsky M, Aghababyan K, Fakriadis Y, Makrigianni E, Jerzak L, Azafzaf H, Feltrup-Azafzaf C, Rotics S, Mokotjomela TM, Nathan R, Wikelski M, 2016, Costs of migratory decisions: a comparison across eight white stork populations. Science Advances 2(1): e1500931. doi:10.1126/sciadv.1500931

Additionally, please cite the Movebank data package:

Flack A, Fiedler W, Blas J, Pokrovski I, Mitropolsky B, Kaatz M, Aghababyan K, Khachatryan A, Fakriadis I, Makrigianni E, Jerzak L, Shamin M, Shamina C, Azafzaf H, Feltrup-Azafzaf C, Mokotjomela TM, Wikelski M (2015) Data from: Costs of migratory decisions: a comparison across eight white stork populations. Movebank Data Repository.

doi:10.5441/001/1.78152p3q

Package Identifier

doi:10.5441/001/1.78152p3g

(cc) ZERO

Cite | Share

Abstract

Annual migratory movements can range from a few tens to thousands of kilometers, creating unique energetic requirements for each specific species and journey. Even within the same species, migration costs can vary largely because of flexible, opportunistic life history strategies. We uncover the large extent of variation in the lifetime migratory decisions of young white storks originating from eight populations. Not only did juvenile storks differ in their geographically distinct wintering locations, their diverse migration patterns also affected the amount of energy individuals invested for locomotion during the first months of their life. Overwintering in areas with higher human population reduced the stork's overall energy expenditure because of shorter daily foraging trips, closer wintering grounds, or a complete suppression of migration. Because migrants can change ecological processes in several distinct communities simultaneously, understanding their life history decisions helps not only to protect migratory species but also to conserve stable ecosystems.

-DOI

Keywords

animal tracking, avian migration, Ciconia ciconia, Env-DATA, Movebank, movement ecology, white storks,

MPIO white stork lifetime tracking data (2013-2014)-gps.csv View File Details

Download: README.txt (14.21Kb)

Download: MPIO white stork lifetime tracking data (2013-2014)-gps.csv.zip (24.20Mb)

Citation

TRAINING

Resource and step-selection models in Movebank, EnvDATA, R Lectures & scripts: https://movebankworkshopraleighnc.netlify.com

COLLABORATION

SYMPOSIUMON
ANIMAL MOVEMENT
and the ENVIRONMENT

Science Home News Journals Topics Careers

Log in | My account | Contact Us

Become a member Renew my subscription | Sign up for newsletters

REPORT

Marlee A. Tucker^{1,2,*}, Katrin Böhning-Gaese^{1,2}, William F. Fagan^{3,4}, John M. Fryxell⁵, Bram Van Moorter⁶, Susan C. Alberts⁷, Abdullahi H. Ali⁸, Andrew M. Allen^{9,10}, Nina Attias¹¹, Tal Avgar¹², Hattie Bartlam-Brooks¹³, Buuveibaatar Bayarbaatar¹⁴, Jerrold L. Belant¹⁵, Alessandra Bertassoni¹⁶, Dean Beyer¹⁷, Laura Bidner¹⁸, Floris M. van Beest¹⁹, Stephen Blake^{20,21}, Niels Blaum²², Chloe Bracis^{1,2}, Danielle Brown²³, P. J. Nico de Bruyn²⁴, Francesca Cagnacci^{25,26}, Justin M. Calabrese^{3,27}, Constança Camilo-Alves^{28,29}, Simon Chamaillé-Jammes 30, Andre Chiaradia 31,32, Sarah C. Davidson 33,20, Todd Dennis 34, Stephen DeStefano 35, Duane Diefenbach³⁶, Iain Douglas-Hamilton^{37,38}, Julian Fennessy³⁹, Claudia Fichtel⁴⁰, Wolfgang Fiedler²⁰, Christina Fischer⁴¹, Ilya Fischhoff⁴², Christen H. Fleming^{3,27}, Adam T. Ford⁴³, Susanne A. Fritz^{1,2}, Benedikt Gehr⁴⁴, Jacob R. Goheen⁴⁵, Eliezer Gurarie^{3,46}, Mark Hebblewhite⁴⁷, Marco Heurich^{48,49}, A. J. Mark Hewison⁵⁰, Christian Hof¹, Edward Hurme³, Lynne A. Isbell^{18,51}, René Janssen⁵², Florian Jeltsch²², Petra Kaczensky^{6,53}, Adam Kane⁵⁴, Peter M. Kappeler⁴⁰, Matthew Kauffman⁵⁵, Roland Kays 56,57, Duncan Kimuyu 58, Flavia Koch 40,59, Bart Kranstauber 44, Scott LaPoint 20,60, Peter Leimgruber 27, John D. C. Linnell⁶, Pascual López-López⁶¹, A. Catherine Markham⁶², Jenny Mattisson⁶, Emilia Patricia Medici^{63,64}, Ugo Mellone⁶⁵, Evelyn Merrill¹², Guilherme de Miranda Mourão⁶⁶, Ronaldo G. Morato⁶⁷, Nicolas Morellet⁵⁰, Thomas A. Morrison⁶⁸, Samuel L. Díaz-Muñoz^{69,70}, Atle Mysterud⁷¹, Dejid Nandintsetseg^{1,2}, Ran Nathan⁷², Aidin Niamir¹, John Odden⁷³, Robert B. O'Hara^{1,74}, Luiz Gustavo R. Oliveira-Santos⁷⁵, Kirk A. Olson¹⁴, Bruce D. Patterson⁷⁶, Rogerio Cunha de Paula⁶⁷, Luca Pedrotti⁷⁷, Björn Reineking^{78,79}, Martin Rimmler⁸⁰, Tracey L. Rogers⁸¹, Christer Moe Rolandsen⁶, Christopher S. Rosenberry⁸², Daniel I. Rubenstein⁸³, Kamran Safi^{20,84}, Sonia Saïd⁸⁵, Nir Sapir⁸⁶, Hall Sawyer⁸⁷, Niels Martin Schmidt^{19,88}, Nuria Selva⁸⁹, Agnieszka Sergiel⁸⁹, Enkhtuvshin Shiilegdamba¹⁴, João Paulo Silva 90,91,92, Navinder Singh 9, Erling J. Solberg 6, Orr Spiegel 93, Olav Strand 6, Siva Sundaresan 94, Wiebke Ullmann²², Ulrich Voigt⁹⁵, Jake Wall³⁷, David Wattles³⁵, Martin Wikelski^{20,84}, Christopher C. Wilmers⁹⁶, John W. Wilson⁹⁷, George Wittemyer^{37,98}, Filip Zieba⁹⁹, Tomasz Zwijacz-Kozica⁹⁹, Thomas Mueller^{1,2,27,*}

COLLABORATION

ACKNOWLEDGEMENTS

Pls Martin Wikelski

Roland Kays

Gil Bohrer

Development and support

Matthias Berger

Sarah Davidson

Friedrich Schaeuffelhut

Martin Storhas

Collaborators

David Douglas

Wolfgang Fiedler

Bart Kranstauber

Kamran Safi

Anne Scharf

many others!

Funding

Deutsche Forschungsgemeinschaft

Partners

