

#### A scientific approach for large carnivore monitoring in the Romanian Carpathians

**Ruben Iosif** 

Iasmina Maria Moza

Liviu Ungureanu

Barbara Promberger

Maja Jelenčič

Tomaž Skrbinšek

CARPATHIA® European Wilderness Reserve



University of Ljubljana

Colțești - 25-28 November 2019

#### Background

October 2016 – Government banned trophy hunting raising the opportunity and the obligation to implement a sustainable management based on scientific data.



#### **Coexistence through institutional collaboration**

- "Embrace the principles and methods of sustainability sciences"
- "Create institutional spaces to implement transdisciplinary curricula"
- "Engage with institutions and stakeholders to create novel institutional structures that can respond to multiple challenges of human–large carnivore coexistence"



### **Current monitoring approach**

#### **Counting animals per Hunting Concessions..**

- Uncertain observations at feeding points
- Uncertain track measurements
- Only a few regional initiatives performing a quantitative assessment (e.g. WolfLIFE)

#### Packs and Pairs distribution (2014-2017)

|            | F               | Study area          | Wolf density<br>(no./100km²) | Pack density<br>(no./1000km²) |
|------------|-----------------|---------------------|------------------------------|-------------------------------|
| 11111      |                 | 1-PVSO              | 1.75                         | 2.50                          |
| HP-SC      | THE AVANT       | 2-HHM               | 1.91                         | 3.33                          |
| 3- Caliman | HEALTH          | 3-Calimani          | 2.80                         | 4.00                          |
| HH         | TO ENDER        | 4-VNT               | 1.00                         | 1.66                          |
| Roman -    | 102-Filem       | ₽ack siz<br>Wolf de |                              | olves/pack                    |
| pair       | O probable pack | Pack de             | nsity: 3.00 p                | acks/1000 km²                 |
| pack       | surveyed square |                     |                              | MY(                           |

#### **Oral Presentations**

WOLF (CANIS LUPUS) IN THE EASTERN ROMANIAN CARPATHIANS: FIRST ESTIMATES OF POPULATION PARAMETERS BASED ON A NON-INVASIVE INTEGRATED SAMPLING DESIGN

Teodora Sin<sup>13</sup>, Andrea Corradini<sup>1</sup>, Ioan-Mihai Pop<sup>1</sup>, Silviu Chiriac<sup>1</sup>, Anne Jarausch<sup>4</sup>, Carsten Nowak<sup>4</sup>, Andrea Gazzola<sup>1</sup> <sup>1</sup> *Faculty of Biology, University of Bucharest, Romania*:

Eurivianmental Dirotection Agency, Vrancea County, Romania; Association for the Conservation of Biological Diversity, Romania; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany

Effective management and conservation strategies require robust population estimates. In Romania, wolf is a protected species and its management relies mostly on regulated hunting using derogation from the Habitats Directive provisions. The yearly culling quotas are based on estimates of absolute wolf numbers and proposed hunting quotas provided by the game

×



#### Officially reported data unable to assisst management

• Growth rate for Romanian bear population is biologically unrealistic



#### Journal of Applied Ecology

Journal of Applied Ecology 2016, 53, 1248-1259

doi: 10.1111/1365-2664.12660

C

Assessing biological realism of wildlife population estimates in data-poor systems

Viorel D. Popescu^{1,2a^{\uparrow}}, Kyle A. Artelle^{3,4^{\uparrow}}, Mihai I. Pop^{1,5}, Steluta Manolache^{1,5} and Laurentiu Rozylowicz^1

<sup>1</sup>Centre for Environmental Research (CCMESI), University of Bucharest, Bucharest, Romania; <sup>2</sup>Department of Biological Sciences, Ohio University, Athens, OH, USA; <sup>3</sup>Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; <sup>4</sup>Raincoast Conservation Foundation, Sidney, BC, Canada; and <sup>4</sup>Asociatia pentru Conservaria Diversitatii Biologice (ACDB), Focsani, Romania

# Knowledge gaps towards coexistence and sustainable decision making in Romania

Robust population estimates

- Assess effects of supplemental feeding in species ecology, behavior, population structure
- Effects of extracting or relocating conflictual individuals



### Long term monitoring of populations



#### **Concept of mark-recapture**



Total Population
First Capture (n1)
Second Capture (n2)
Recaptures (n3)



### **Monitoring area**



#### **Data collected so far**



#### **Results for 2017 season**

- Number of genotyped individuals
- Sex ratio
- Detection probability
- Recapture rate
- Abundance
- Density





#### 01 780 non-invasive DNA samples:



#### 04 Higher detection probability and recapture rates

#### CMR Saturating Graph

Animals within the study area and during sampling season





Bear males have higher detectability at rubbing trees.

05 Estimated number of individuals revealed a sex ratio biased towards females
- a hunted population



#### 06 Final numbers – density estimates

|                                   | N    | Cid  | Ciu  |
|-----------------------------------|------|------|------|
| Superpopulation Size              | 290  | 258  | 345  |
| Local Population Size             | 152  | 123  | 202  |
| Population Density [bears/100 km2 | ]    |      |      |
| Total Density                     | 16.9 | 13.6 | 22.4 |
| Density Males                     | 6.5  |      | 8:0  |
| Density Females                   | 10.3 | 8.2  |      |

Officially reported data for 2017 show a total density of **21.9 bears / 100 sqkm** for the 8 GMUs overlapping the monitoring area.





07 Long distance moves





#### II Results for winter 2017-2018

- Number of genotyped individuals
- Sex ratio
- Size and pack structure (pedigree reconstruction)
- Abundance





- 01 147 non-invasive DNA samples:  $\rightarrow$  53.7% wolf samples
  - $\rightarrow$  6.8% dog or fox samples
  - $\rightarrow$  8.2% mixt samples (urine)
  - $\rightarrow$  31.3% degraded DNA samples (scat and hair)
- 02 The number of successfully genotyped individuals = **26**
- **03 Sex ratio: 11***∂* **and 15***♀*
- 04 **21** individuals belong to 4 packs (pack size = ~5 individuals)







05 Pedigree reconstruction  $\rightarrow$  identified parental relations between individuals and assigned individuals to four different packs.













Animal <sup>4</sup>

.:

#### 06 Abundance estimates

| Model        | Sex     | Ν  | 95% CI  |
|--------------|---------|----|---------|
| Capwire TIRM | All     | 31 | 25 - 46 |
| Capwire TIRM | Males   | 10 | 9 - 12  |
| Capwire TIRM | Females | 21 | 15 - 37 |
| MhChao       | All     | 32 | 19 - 44 |
| MhChao       | Males   | 11 | 6 - 15  |
| MhChao       | Females | 22 | 9 - 34  |





## Lynx

#### III Non-invasive DNA sampling

 Lynx samples (especially hair) are degraded

#### IV Camera trapping

- Two sessions winter 2017-2018 winter 2018-2019
- Number of "captured" individuals
- Number of females with cubs
- Detection probability
- Recapture rate
- Density





- 01 Session 1: 47 traps  $\rightarrow$  40 trap days
- Lynx detected at 20 traps 02 42%
- 03 37 detections not all good enough to identify individuals







- 04 12 unique individuals
- 05 Recapture rate =  $1.4 \rightarrow$  not enough for population estimates





01 Session 2: 64 traps  $\rightarrow$  105 trap days



02 Lynx detected at 40 traps 63.5%







03 A catalog of 31 unique individuals 4 females with cubs



#### 05 Examples



05 Encounter history



#### 05 Density estimates

| Local population density<br>(lynx / 100 sqkm) | Ν    | Cid  | Ciu  |
|-----------------------------------------------|------|------|------|
| secr.usage                                    | 2.02 | 1.36 | 2.98 |
| secr.null                                     | 1.91 | 1.31 | 2.77 |
| secr.t                                        | 1.91 | 1.31 | 2.77 |



## Take home message

### Lynx

- Genetics is not working
- Camera trapping works fine detailed results for decision making
- Byproducts data on other species (ungulates abundance, predator-prey overlap, human disturbances, etc.)



## Take home message

#### The possibility of using these model studies nationwide

- We need competent lab and scientists (transparency)
- Collaboration between hunters, game wardens and researchers



## Thank you!



FOUNDATION CONSERVATION CARPATHIA

12 Cristianului St., Brasov – Romania info@carpathia.org

#### Acknowledgements

Our monitoring team: Daniel Bârloiu, Liviu Bulgaru, Viorel Ganci, Radu Geantă, Nelu Moșu, Răzvan Rohan, Bogdan Sulică, Călin Şerban, Laviniu Terciu, Claudiu Țoanță

Agreements: Asoc. de Vânătoare Bârsa Brașov, RPL de Adm. a Pădurilor Zărnești, Adm. Parcului Național Piatra Craiului, AVPS Jderul Argeș, AVPS GTS Muntenia Argeș, AV Piatra Craiului Făgăraș Conservation, OS Carpathia

- Edge effect brown bear individuals from outside the monitoring area, those of which home range only partially overlap with our monitoring area
  - To calculate local density we applied a spatial correction around our monitoring area.
  - This buffer (correction factor) is calculated per sexes based on the distance between recaptures of the same individuals.



- Edge effect brown bear individuals from outside the monitoring area, those of which home range only partially overlap with our monitoring area
  - The buffer is bootstraped around a mean, minimum and a maximum distance moved. The parameter used to calculate this buffer is called Mean Maximum Distance Moved



Estimated expenses for genetic monitoring of brown bear A three month season At the scale of a hunting concession (10000 ha)



|                 | Expenses                                          | Ammount (lei) | Description                                              |
|-----------------|---------------------------------------------------|---------------|----------------------------------------------------------|
| Fixed costs     | Statistical analyses and scientific report        | 23500         | Costs do not vary significantly with the surface         |
| FIXEU CUSIS     | Develop mobile app for consistent data collection | 46000         | On long term, apply only once independent on the surface |
|                 | Field personnel                                   | 36000         | Sallaries and field equipment                            |
| Costs that will | Fuel                                              | 1100          | Fuel consumption for a car for 30 days in the field      |
| vary / surface  | Genetic analyses                                  | 33000         | Approx. 100 kits, consumables, transport, lab procedures |

- Average home range size of lynx in similar study areas in Europe (Alps, Jura, Dinaric, and Carpathians) was around 252.1 km2 for males and 146.6 km2 for females.
- Our trap array can include the entire home ranges of ~6 individuals, with an average 13.6 trap stations per individual home range.
- However, edge effect is expected to be high



• Dealing with edge effect in SECR

• Effective monitoring area affects density estimates



### **Deleted Slide**

