

BALANCING ALPINE ENERGY AND NATURE

A spatial decision support system for renewable energy production in Alpine valleys: analysis of trade-offs between renewable energy and ecosystem services.

Workshop on balancing bioenergy production and sustainable forest management in Mountains Areas 16 – 18 May 2017, Sopron, Hungary Daniele Vettorato, Marco Ciolli

Giulia Garegnani, Jessica Balest, Gianluca Grilli, Giorgio Curetti, Pietro Zambelli, Francesco Geri, Marco Ciolli, Alessandro Paletto, Daniele Vettorato

Partners

recharge: green

Austria

- Environment Agency Austria
- Institute for Geography, University of Innsbruck
- International Institute for Applied Systems Analysis
- Regional Development Vorarlberg
- · Research Institute of Wildlife Ecology, lead partner

France

Mountain Institute

Germany

- Bavarian electric power company
- blue! advancing european projects (sub-contracted by the lead partner)
- International Commission for the Protection of the Alps

Italy

- European Academy of Bozen/Bolzano
- · Veneto Region / Office for Economics and the Development of Mountain Areas

Slovenia

- Agricultural Institute of Slovenia
- Department for forestry and renewable forest resources, University of Ljubljana
- Slovenia Forest Service
- Triglav National Park

Switzerland

Agroscope – Swiss research into agriculture, nutrition and the environment

Presentation Outline

recharge : green

1. Introduction

4. Case Studies application

2. Methodology

3. Software

Presentation Outline

recharge ::: green

2. Methodology

3. Software

Research Academy - Bolzano

- Applied research
- Funded in 1992 no profit
- 400 collaborators
- Currently partner in 65 EU funded projects (21 as Leader)
- 11 Institutes

Institute for Renewable Energy

- Thermal Solar Systems
- Energy Efficiency in Buildings
- Photovoltaic Solar Systems
- Urban and Regional Energy Systems

International Cooperation

- Cooperation in 15 perennial projects of the international energy agency
- Cooperation in 25 European research and demonstration projects (as well with Mexico, Bangladesh, China, India)
- Cooperation with over 100 partners from research, industry and public administration
 12 years of activity

• Main Subcontractors

UNIVERSITY OF TRENTO - Italy

Eurac role in

recharge ::: green

Theoretical Potential Maps for the Alpine Area - Atlas

EURAC research

Eurac role in

recharge: green

 Stakeholders involvement methodology and Expert Opinion

 Impact evaluation on Ecosystem Services

Eurac role in

recharge : green

• Support to the Pilot areas

 Elaboration of the Spatial Decison Support System Software and test in Pilot Areas

Presentation Outline

recharge : green

4. Case Studies application

2. Methodology

3. Software

Recharge.green objectives

recharge : green

- Create and test a methodology for <u>decision-making</u> <u>process</u> for <u>sustainable energy</u> production, ensuring:
- the preservation of Ecosystem Services,
- strong interaction with the stakholders from earliest decision moments,
- Development opportunities for local economies;

Recharge.green objectives

recharge : green

- Mitigation to climate changes;
- Enhancement and maintenance of biodiversity values, ecosystem services and human well-being;
- Social and territorial cohesion;
- Promotion of regional development potential;
- Innovation of the population;
- Promotion of environmental quality, landscape and cultural heritage and sustainable use of natural resources.

Recharge green follows the Strategic Environmental Assessment structure recharge igreen and aims

What is SEA?

- Strategic is an attribute that qualifies ways of thinking, attitudes, actions related to strategies;
- It is a flexible framework of key elements, acting strategically in a decision process to enable a facilitating role, ensuring an added-value to decision-making

(Strategic Environmental Assessment Better Practice Guide - methodological guidance for strategic thinking in SEA – Partidario 2012)

Strategic Environmental Assesment

Recharge green <u>spatial explicit</u> TOOLBOX for SEA

recharge ::: green

Balancing renewable energy exploitation and ecosystem services

Modelling framework

recharge ::: green

🍪 🖸 🛛 r.	green.hydro.theoretical [raster, hydropower, renewable energ	s o s					
🖗 Calculate the t	Calculate the theoretical hydropower energy potential for each basin and segment of river						
Required	Name of input elevation raster map:*	(elevation=name)					
Basin Potential		•					
Optional	Name of river discharge raster map [m3/s]:*	(discharge=name)					
Command output	I	•					
🔶 Manual							
3	<u>≰C</u> lose <u>R</u> un <u>C</u> opy <u>∭</u> Hel	p					

r.green.hydro.theoretical elevation=<required> discharge=<required> threshold=1 output=

Alternatives Formulation and Evaluation

Resource availability and physical variables

Legal values and/or planning recommended

Technical parameters and

Realization cost and market price

HOW TO EVALUATE ALTERNATIVE SCENARIOS?

Ecosystem Service definition recharge green

- Humankind benefits in a multitude of ways from all kinds of ecosystems: agroecosystems, forest ecosystems, grassland ecosystems, aquatic ecosystems, natural ecosystems, urban ecosystems, etc.
- ecosystem services are "the benefits people obtain from ecosystems". (Millennium Ecosystem Assessment 2006)
- i.e. clean drinking water, decomposition of waste, wood production, air purification etc...

Energy production on Ecosystem Services functionality recharge ;; green

Reduce GHG

Timber production

Fire risk reduction Landscape management

Biodiversity

Soil fertility

Energy production

Hydrogeological protection

How to include the ES concept in energy planning in order to make sustainable choices?

Economic valuation

recharge ::: green

- Even if strongly criticized... economic valuation of ES can be useful, by providing a way to justify and set priorities for programs, policies, or actions that protect or restore ecosystems and their services
 - To justify and decide how to allocate public spending on conservation, preservation, or restoration initiatives.
 - To consider the public's values, and encourage public participation and support for environmental initiatives.
 - To compare the benefits of different projects or programs.
 - To prioritize conservation or restoration projects.
 - To maximize the environmental benefits per dollar spent.

Economic Approach

- 1. Market and Non-market evaluation of ES;
- 2. Benefit transfer;
- 3. Trade-off Analysis;

Inclusion of ES in the **Cost-Benefit analysis** of producing RE.

Total economic Value

Total economic value (**TEV**) is a concept in cost–benefit analysis that refers to the value derived by people from a natural resource, a man-made heritage resource or an infrastructure system, compared to not having it.

Total Economic Value – Meta Analysis

References identified:

29 references for the Alpine forests (and pastures) with a non-uniform distribution by geographical area and forest function considered
37 references for the mountain forests (and pastures) in

recharge ::: green

Europe (Carpathians, Pyrenees, Apennines, etc..)

Total Economic Value – Meta Analysis

Reference	Study area	Prot. Area	Altitude (m)	Forest types	Area (ha)	Good and services	Evaluation Methods	Current value (€/ha)	Year
Notaro et al.	Lavazè forest (Trentino)			Norway spruce	99,1	Timber Production	Market value	€ 168,51	2009
				European larch		Carbon Sequestration	Market value	€ 98,92	2009
				Silver fir		Hydrogeological Protection	Replacement cost	€ 149,72	2009
						Tourism-Recreation	CV	€ 346,01	2009
Notaro S., Paletto A.	Valdastico mountain fore	st	985 (620-1350)	Norway spruce	269	Hydrogeological Protection	Replacement cost	€ 284,20	2012
				European larch					
Gret-Ragamey A.et al.	Landschaft Davos		1560	1	25500	Avalanche protection	Cost of damage	€ 485,38	2008
						Scenic beauty	WTP	€ 279,85	2008
						Habitat suitability	Replacement cost	€ 0,03	2008
						Carbon sequestration		€ 37,67	2008
Goio et al.	Trento Province		1000	Norway spruce	345180	Total production	Market value	€ 80,49	2008
				European larch		(of which timber)	Market value	€ 49,64	2008
				Silver fir		landscape/recreational	CV	€ 51,88	2008
						carbon fixing value	market value	€ 13,68	2008
						Hydro-geological protection value	uccost of substitute meadow	€ 229,59	2008
Hayha T. et al.	Fiemme e Fassa forests			Norway spruce	40000	Timber production	Market value	€ 239,43	2012
				European larch		Game products	Market value	€ 14,90	2012
				Scots pine/beech		Mushrooms/barries	Market value	€ 13,93	2012
						Carbon sequestration	Market value	€ 104,58	2012
						Hydro-geological protection	Replacement cost	€ 327,90	2012
						Tourism-Recreation	WTP	€ 32,00	2012
						Recreation hunting/picking	Market value	€ 15,30	2012
Marangon & Gottardo	Fusine forests (FVG)			Silver fir	1568,58	Timber production	Market value		1998
J. J				European larch		Mushrooms/barries	Market value		
				Norway spruce		Tourism-Recreation	TCI, CV, DV		
Hackl & Pruckner	Kalkalpen national park	х		Coniferous	21500	Tourism-Recreation	CV	333,91	2006
Scolozzi R.	Parco Adamello-Brenta	x			19900	Timber production	Market value	201,55	2012
						Recreation hunting/picking	Market value	196.8	2012
						Tourism-Recreation	WTP	47.53	2012
						Carbon sequestration	Market value	333.57	2012
						Avalanche protection	Replacement cost	126.38	2012
						Hydro-geological protection value	ueReplacement cost	573.2	2012
Busch et al.	Veneto (Cansiglio)					Timber production	Market value		2011
						Carbon sequestration	Market value		
						Erosion protection	Replacement cost		
					_	Gene pool prot.	Benefit transfer		
						Tourism-Recreation	TCM		
Olschewski R et al	Andermatt (Svizzera)		1450	Norway spruce	24	Avalanche protection	Choice Experiment	€ 43 31	2012
	/			European larch					
				Swiss pine					
Bernasconi & Schroff	Berna				6300	Tourism-Recreation	CV	€ 81,85	2003

Expert Opinion for validation of values

- In order to understand the impacts of renewable energy development in the Alpine context an **expert-based approach** was adopted.
- Identification of a sample of experts considering the following aspects:
 - a. Equitable geographical distribution
 - b. Expertise and skills on ecosystem services and/or renewable energies
 - c. Local knowledge of the context
- <u>Face-to-face interviews</u> to the experts using a semi-structured questionnaire.
- <u>Trade-off analysis</u> between renewable energy development, ecosystem services and local development

Results: profile of experts recharge ... green

Through a brainstorming session **40 experts** were identified by the partners of recharge.green project. All the experts were contacted and face-to-face interviewed.

Experts are representatives of public institutions, private organizations and associations with a long expertise in the following fields:

- Forestry and agriculture (about 40% of experts)
- Nature conservation and ecosystem services (about 20%)
- Renewable energy (about 40%)

Sample of experts

Results: evaluation of Forest ES recharge green

Economic evaluation of Ecosystem Services (ES) and economic impact recharge green assessment for FB

ES	Methodology	Formula	Description
Timber	Market Price	$Timber = \sum_{i=1}^{N} Q_i x P_i$	Timber = timber value N = number of tree species Q _i = quantity of the i-th tree species P _i = price of the i-th tree species
Hazard protection	Replacement cost	$V_p = \frac{C_0 x r}{(1+r)^t}$	V _c = protection value C ₀ = Cost of substitution engineering work r = Discount rate t = lifetime of the engineering work
Carbon sequestratio n	Market Price	$V_c = Q_{carb} \ x \ P_{carb}$	V = value of carbon sequestration Q_{carb} = quantity of carbon annually stored by forests P_{carb} = carbon price in the voluntary carbon market
Recreation	Benefit Transfer		Vr = Value of recreation Nt = Annual number of tourist in the area BTw = Average WTP value from a meta-analysis

Mapping ES

recharge ::: green

Cost-Benefit Analysis with environmental externalities included;

Payment for ecosystem services loss (strong or weak Sustainability concept?);

Presentation Outline

recharge : green

4. Case Studies application

2. Methodology

3. Software

<u>Desktop version is Open source:</u> <u>free and customizable !!!</u>

R.GREEN SPATIAL DECISION SUPPORT SYSTEM

HOW TO INSTALL

The Decision Support System (DSS) r.green is available as add-on in GRASS-GIS and Plugin for QGIS. It works on different Operation Systems (Linux, Windows, Mac).

The main steps to follow to install GRASS or QGIS and use r.green DSS are:,

To install r.green as add-on of GRASS :

Download and install <u>GRASS7</u>; <u>http://grass.osgeo.org/grass7/</u>.

For some help about how to use GRASS, tutorials in different languages are available online: http://grass.osgeo.org/documentation/tutorials/.

 Install the add-on with the following command "g extension r green" from GRASS Command Console or Terminal.

Technical manuals about the commands are available online: <u>http://grass.osgeo.org/grass70/manuals/addons/</u>

To install r.green as Plugin in QGIS :

 Download and install QGIS 2.8: <u>http://www.gqis.org/en/site/forusers/index.html</u> Ear some help about how to use QGIS, tutorials in English are available online: <u>http://www.qqistutorials.com/en/</u>

 In the Plugins tab, choose "Manage and Install Plugins..." and install rgreen which will be soon in the list.

A Manual for each add-on is available as on-line help of the software (in the Manual tab of each interface).

More information are available at this email contact: r.green@eurac.edu

The project website: http://www.recharge-green.eu/

The developers website: <u>http://www.eurac.edu/en/research/technologies/renewableenergy/</u> \rightarrow Urban and Regional Energy Systems

r: green

General overview of Open Source GRASS and QGIS environment

recharge green

	Terminale – ÷ X
r Terminale - francescogeri@ubuntu: ~/Documents/r.green/r.gre	ASS GIS 7.0.0 Map Display: 1 - Location: PNAM_bk@biomasfor - + ×
ile Modifica Visualizza Terminale Schede Aiuto 💿 🕞 🖉 😽 🎼 🔅	🐎 🗩 🗩 🌠 🎾 🗛 🔎 🐹 🖺 📥 🕞 🖓 Vista 2D 🛛 👻
a construction of the second	
GRASS GIS 7.0.0 Layer Manager	-7968
e e e e e e e e e e e e e e e e e e e	
e e	
A	
	Mr. Alther Hite & Land Market
a	
	NTA - 2 MARCHAR EVE
e	E WILL A HIN A THE
	DUT TO AND
Finestra di output	, The little with the
🔏 Pulisci 🛛 🕹 Salva 🖉 Log file 🖉 Pulisci	I _ (A SE) " STALL STATUS (STATUS
	NXX
r.green.biomassfor.theoretical	The the the the the
	A A A A A A A A A A A A A A A A A A A
	K. J. J. Share M. J. Share M.
	THE JUE ' CARAS
ρ	
Press Tab to display command help. Ctrl+Space to autocomplete	Coordinate 🗘 Visualizz
Laver Console dei programmi Cerca moduli Console python	

Spatial Decision Support System recharge :: green

Sustainable Energy potential Theoretical Legal and/or "recommended 11 Technical Economic

Resource availability and physical variables

Legal values and/or planning recommended constrains

Technical parameters and limits

Realization cost and market price

41

- r; green impact
- ••••
- r 🔅 green 🍎 solar

r:::green wind

r ;; green hydro

Desktop version

r::: green **k** biomassfor

- Multi platform:
 - Windows
 - Linux
 - Mac

4 modules + 1

The energy section with calorific parameters

Base	Energy	Opzionale	output del coman	do 📀 Man	uale		
Energy	for tops a	and branches i	n high forest in MW	h/m³:			(energy_tops_hf=float
0.49							
Energy	for the w	hole tree in hi	gh forest (tops, bran	ches and ster	n) in MWh/m³:	(energ	gy_cormometric_vol_hf=float;
1.97							
Energy	for tops a	and branches f	for Coppices in MWh	ı/m³:			(energy_tops_cop=float)
0.55							
			🗙 Chiudi	Esegui	🦕 Copia	Aiuto	
🗌 Chi	udi dialog	o alla fine					
	arch						

r.green.biomassfor.technical: cable crane parameters

 Richiesto Opt files 	Cable Crane	Forwarder	Other	Energy	Opzionale 🎙
Percent slope lower limit with O	able Crane:			((slp_min_cc=float)
30.					
Percent slope higher limit with	Cable Crane:			(:	slp_max_cc=float)
100.					
Maximum distance with Cable	Crane:			(d	list_max_cc=float)
800.					
AC					

r.green.biomassfor.technical: forwarder parameters

_							
٩	Richiesto	Opt files	Cable Crane	Forwarder	Other	Energy	Opzionale 🕨
Pe	rcent slope hi	gher limit with	Forwarder:			()	slp_max_fw=float)
3	D.						
M	aximum distai	nce with Forwa	arder:			(d	list_max_fw=float)
6	00.						
		🗙 Chiu	di Esegui	🧔 🕼 Co	pia 🛛	Aiuto	

r.green.biomassfor.economic: list of costs

EURA

research

-		r.gre	en.biomassfor.econo	mic [raster, l	biomass]		- +	×		
Ŷ	Estimates bioenergy that can be collected to supply heating plants or biomass logistic centres and that associated with a positive net revenue for the entire production process									
4	Richiesto	Opt files	Technical data	Prices	Costs	Energy	Opzionale	▶		
Fe 1	elling and/or fell 3.17	ling-processing	cost with chainsaw t	€/h:		(cos	st_chainsaw=floa	t)		
P1 8	rocessing cost w 37.42	vith processor	€/h:			(cos	t_processor=floa	it)		
Fe 9	elling and proce 96.33	ssing cost with	harvester €/h:			(cos	st_harvester=floa	it)		
Б 1	xtraction cost w 11.44	ith high powe	r cable crane €/h:			(c	ost_cablehf=floa	it)		
Ð 1	xtraction cost w 04.31	ith medium po	ower cable crane €/h:			(cost_cablec=floa	it)		
E) 7	xtraction cost w 70.70	ith forwarder •	€/h:			(cos	t_forwarder=floa	it)		
E) 6	xtraction cost w 54.36	ith skidder €/h	11			(c	ost_skidder=floa	it)		
Cl 1	hipping cost €/h 150.87	1:				(co	st_chipping=floa	t)		
Tr 6	ansport with tri 64.90	uck €/h:				(cos	t_transport=floa	it)		
		🗙 Chiud	i Esegui	Go 🕼	pia (? Aiuto				

r.green.biomassfor.impact: co2 emissions

	 r.green.biomassfor.impact [rast 	er, biomass]	- + ×						
	Calculates impact and multifunctionality values								
	Richiesto Opt files Energy Soil and wate	r protection CO2 Emission	Fire risk 🕨						
	Name for output CO2 emissions map:*	(output_basename_co2map	=name)						
	pnam_co2	v							
	Name for output avoided CO2 emissions map: *	(output_basename_aco2map	=name)						
	pnam_avoided_co2	v							
	Name for output net CO2 emissions map:*	(output_basename_nco2map	=name)						
	pnam_net_co2	v	Ŭ						
	Name of Digital terrain model map:	(dtm2:	=name)						
	dtm5m@biomasfor	v							
	Soil production map:	(soilp2_map	=name)						
	soil_prod@biomasfor	v							
	Average tree diameter map:	(tree_diam	=name)						
		▼							
	· · · ·	<i>n</i> 1							
	🗙 Chiudi Esegui	Copia ? Aiuto							
	Aggiungi la mappa(e) creata nel layer tree								
EURAC	🗌 Chiudi dialogo alla fine								

Tot. economical viable and low impact potential bioenergy production : 12170 MWh/y

Presentation Outline

recharge : green

4. Case Studies application

2. Methodology

3. Software

DSS in pilot areas

recharge ::: green

Leiblachtal (Austria) Population: 14,000 inh. (2.75 inh./ha) Land area: 5,100 ha (49% forests)

Mis valley (Italy) Population: 3,990 inh. (0.34 inh./ha) Land area: 11,800 ha (71% forests)

Maè valley (Italy) Population: 7,974 inh. (0.34 inh./ha) Land area: 23,000 ha (81% forests)

> **Triglav National Park** (Slovenia) Population: 2,444 inh. (0.029 inh./ha) Land area: 83,807 ha (62% forests)

Gesso-Vermenagna valley (Italy) Population: 10,022 inh. (0.19 inh./ha) Land area: 51,500 ha (42% forests and 32% grasslands)

DSS in pilot areas

recharge ::: green

Leiblachtal (Austria) Population: 14,000 inh. (2.75 inh./ha) Land area: 5,100 ha (49% forests)

Mis valley (Italy) Population: 3 990 inh. (0.34 inh./ha) Land area: 11,800 ha (71% forests)

Maè valley (Italy) **Population:** 7,974 inh: 0.34 inh,/ha) and area: <u>23,000 ha</u> (81% forests)

> Triglav National Park (Slovenia) Population: 2,444 inh. (0.029 inh./ha) Land area: 83,807 ha (62% forests)

Gesso-Vermenagna valley (Italy) Population: 10,022 inh. (0.19 inh./ha) Land area: 51,500 ha (42% forests and 32% grasslands)

Assesment of available biomass in Piedmont Region Economical potential

Data sources:

PIEDMONT REGION for raster background, for streams and lakes datasets and for administrative boundaries EURAC for interruptions and fish passages positions

Resolution: 2.11m/px

Author(s): G. Curetti G. Garegnani using GRASS Gis and Qgis, may 2015

Legend

Boundary

_akes

Rivers net

10% - 21%

21% - 32% 32%- 43% 43% - 54%

Data sources:

PIEDMONT REGION for raster background, for

and for administrative

for interruptions and fish passages positions

Heat consumption data

EURAC

Resolution: 2.11m/px

boundaries EURAC

ISTAT

Municipal Boundary

Assesment of available biomass in Piedmont Region Coverage percentage of heat consumption

Author(s): G. Curetti G. Garegnani using GRASS Gis and Qgis, may 2015

VIION

research

Thank for your attention

recharge : green

Daniele Vettorato, PhD Coordinator of Urban and regional energy systems research group EURAC research – Institute for Renewable Energy daniele.vettorato@eurac.edu www.eurac.edu

EURAC research

Marco Ciolli, Prof. Forest Ecology and Silviculture Dipartment of Civil Environmental and Mechanical Engineering University of Trento marco.ciolli@unitn.it

