Guidelines for connectivity conservation and planning in Europe

Ana Ceia-Hasse

CIBIO-BIOPOLIS, Research Center in Biodiversity and Genetic Resources & Associate Laboratory, University of Lisbon, Portugal | ana.ceia.hasse@cibio.up.pt

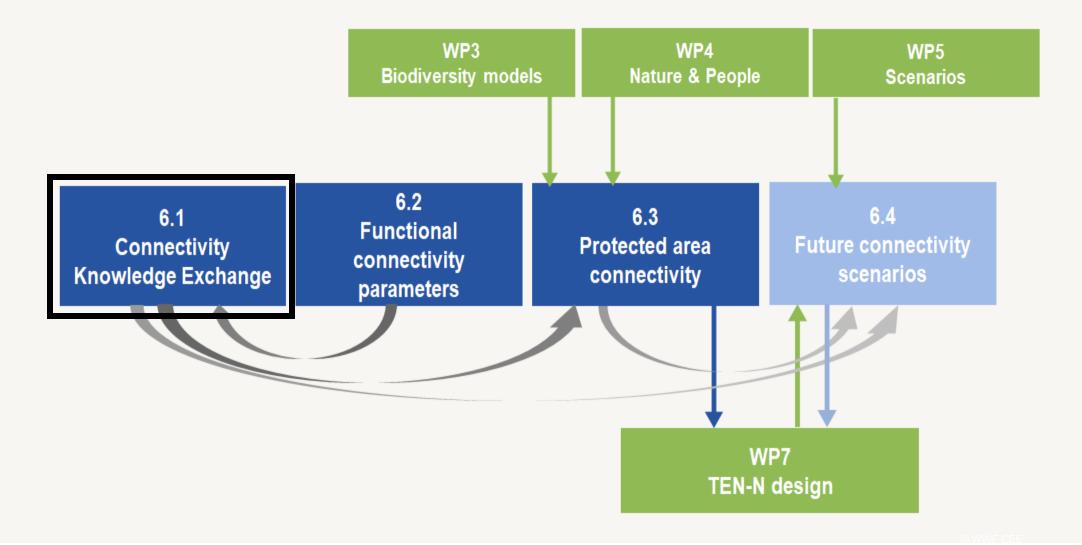
15th Carpathian Convention Working Group on Biodiversity Meeting Vienna, Austria | 17-18 June 2024

©Ruben Smit WWF

Topics for this slot

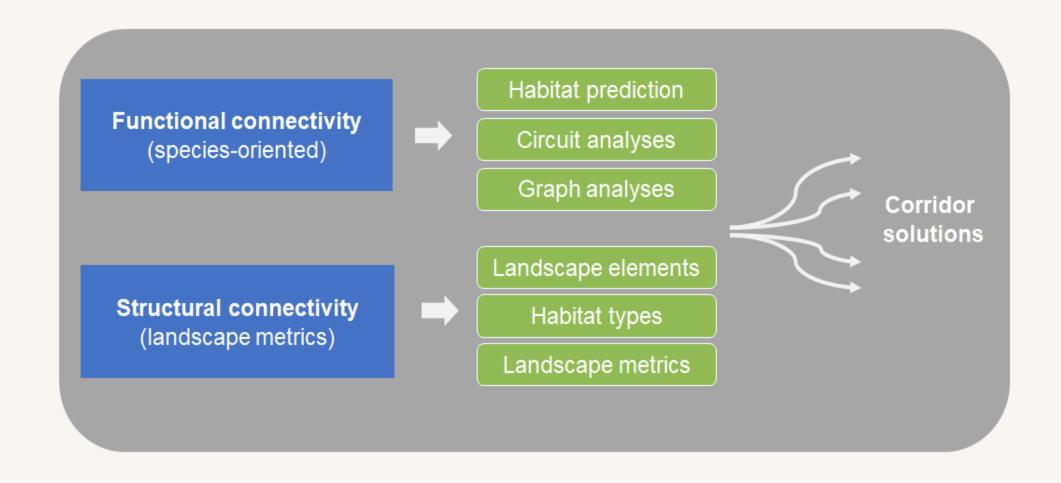
1. Presentation of the Connectivity Guidelines

- 2. What are the topics of the current Guidelines you find important to be included in practical Guidelines?
- 3. What would you like to see included in the NaturaConnect Learning Platform Module?

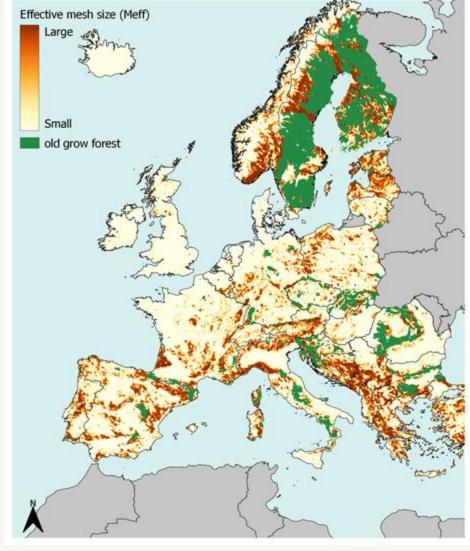


WP6: Multi-scale nature connectivity and corridors design

- Identify ecological and landscape elements and planning instruments defining ecological corridors across scales.
- Develop a coherent methodological framework and guidelines for mapping structural and functional connectivity at the European scale.
- Support adaptation policies by identifying opportunities to establish connectivity in conservation and restoration plans under different climate and land-use change scenarios.



WP6 Flowchart


Corridors design

Structural connectivity analysis

- Development of analysis pipeline for assessing structural connectivity metrics
- Data:
 - Binary habitat maps and/or fragmentation
 - Layers containing information for patches within the fragmentation map, dependent on which connectivity metric is used
- Moving window: neighborhood-analysis at 1-km resolution across Europe

Connectivity probability (effective mesh size) of forests containing old-growth forests

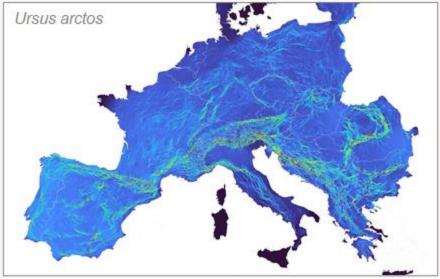
Functional connectivity analysis

Covariate Estimation

- Proportional land covers
- Max. Temp.
- Terrain Ruggedness Index (quadratic)
- Roads density

Species Distribution Modelling

- Mammals Rewilding Data
- Generalized Linear Mixed Model
- · Random effects of biogeographic region


Resistance surface and focal nodes

- · SDM inverted for resistance surface
- · Negative exponential transformation
- Nodes derived from Natura2000 sites > 150km²

Circuitscape 5 Analysis

- Model ~2,000 trans-European circuit connections
- Normalize circuit densities by flow potential
- Final predictions at 1km² and 10km²

The guidelines for connectivity conservation and planning

The **Connectivity Guidelines** provide spatial and land use planners with tools for planning ecological connectivity

naturaconnect.eu/guidelinesfor-connectivity-conservationand-planning-in-europe/

- The document is very comprehensive
- Based on the Guidelines, the NaturaConnect
 Team will develop
 - hands-on Guidelines for practical use
 - a module on ecological connectivity at the NaturaConnect Learning
 Platform

naturaconnect.eu/guidelinesfor-connectivity-conservationand-planning-in-europe/

We are interested in the Carpathian Convention

Stakeholders' opinions, to integrate into practical

Guidelines and the NaturaConnect Learning Platform

Module on ecological connectivity for capacity building

Review: Guidelines for Connectivity Conservation Planning in Europe

Thank you for participating in this review. You can access the **Connectivity Conservation Planning Guidelines** here. The guidelines will be revised based on all the feedback received through this questionnaire and your name will be listed as a reviewer if you agree. Furthermore, the survey will help us identify interests and needs for capacity building. We plan to address these needs in training modules on the future NaturaConnect Learning Platform.

We warmly invite you to join the <u>NaturaConnect Stakeholders Community</u> before or after completing your review. This way, we will keep you updated about NaturaConnect results and opportunities for engagement. It also facilitates recording your contributions to this review.

You do not need to answer all the questions. For example, if you have read only specific sections, feel free to comment only on those. You are also welcome to return and complete the survey after reviewing new sections or the entire document. At the end of the questionnaire, you will be able to provide comments that may not fit in any of the sections.

Thank you for taking the time to share your feedback as we work to enhance the guidelines.

Best regards.

The NaturaConnect Team

tinyurl.com/bdevuvjt

Connectivity guidelines: target audience

- Practitioners and scientists designing and managing nature conservation and restoration projects
- Public administrations, planners and managers within and outside protected areas, private initiatives, foundations, etc. interested in connectivity planning.
- Tailored to meet the needs of those responsible for developing and implementing strategies, policies, and management plans.

How were the guidelines developed and what do they contain? (in a nutshell)

Connectivity knowledge exchange

- Literature review (focus: Europe)
- Survey on connectivity projects in Europe and public repository
- Stakeholder workshop
 - goals and priorities for connectivity conservation
 - knowledge gaps and technical needs

Connectivity knowledge exchange

1. Introduction

- i. Why is ecological connectivity important
- ii. Aims and target audience
- iii. Summary of the content

Part I: Connectivity in Europe: key concepts, policy context, and implementation

2. Connectivity concepts and approaches

- i. Protected areas and ecological corridors
- ii. Structural and functional connectivity
- iii. Connectivity in the context of Green and Blue Infrastructure
- iv. Spatial scale issues and dispersal
- v. Corridors and stepping stones design
- vi. Freshwater and cross-realm connectivity
- vii. Integration of connectivity in the process of area-based planning
- viii. Caveats of corridor design
- ix. Do ecological corridors work

3. Global and EU policy instruments addressing connectivity

- i. Connectivity in the post-2020 Global Biodiversity Framework
- ii. Connectivity in the EU Biodiversity Strategy
- iii. Connectivity in the EU Forest Strategy
- iv. Connectivity in the Green and Blue Infrastructure Strategy
- v. Connectivity in the Water Framework Directive
- vi. Connectivity in the EU Pollinators Initiative

4. Connectivity projects in Europe and Information needs

- i. Survey of connectivity projects in Europe
- ii. Priorities, gaps, and challenges in European connectivity planning

Part II: Tools and guidelines for implementation of connectivity projects in Europe

5. Tools and data sources for modelling connectivity

- i. Introduction
- ii. Least-cost path and resistance kernels
- iii. Graph theory
- iv. Circuit theory
- v. Agent based models
- vi. Structural connectivity metrics and moving windows analysis
- vii. Assessing ecosystem services

6. A framework for connectivity conservation and planning

- i. Introduction to the framework
- ii. Scoping and problem assessment
- iii. Setting of objectives
- iv. Analysis selection and data preparation
- v. Assessment of connectivity
- vi. Implementation, monitoring and evaluation

Connectivity concepts and approaches

Connectivity concepts and approaches

- i. Protected areas and ecological corridors
- ii. Structural and functional connectivity
- iii. Connectivity in the context of Green and Blue Infrastructure
- iv. Spatial scale issues and dispersal
- v. Corridors and stepping stones design
- vi. Freshwater and cross-realm connectivity
- vii. Integration of connectivity in the process of area-based planning
- viii. Caveats of corridor design
- ix. Do ecological corridors work?

Global and EU policy instruments addressing connectivity

Global and EU policy instruments addressing connectivity

- i. Connectivity in the post-2020 Global Biodiversity Framework
- ii. Connectivity in the EU Biodiversity Strategy
- iii. Connectivity in the EU Forest Strategy
- iv. Connectivity in the Green and Blue Infrastructure Strategy
- v. Connectivity in the Water Framework Directive
- vi. Connectivity in the EU Pollinators Initiative

Ecological connectivity projects in Europe (survey & repository)

Public repository of ecological connectivity projects

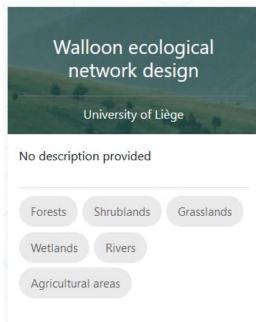
+ Add project

The NaturaConnect project is an EU-funded Research and Innovation action that develops knowledge, tools, and capacity-building to support the implementation of a coherent network of protected areas across Europe - the Trans-European nature network (TEN-N).

This first version of this public repository of connectivity projects supports knowledge sharing and provides information on ecological connectivity projects in Europe undertaken at Regional to National and Pan-European levels.

Please send your suggestions for improving the site and/ or for adding features to web@naturaconnect.idiv.de.

Country		Spatial scope		Biogeographical region	on
Nothing selected	~	Nothing selected	~	Nothing selected	~
Ecosystem types		Approaches for assessing connectivity		Other benefits	
Nothing selected	~	Nothing selected	~	Nothing selected	


+ Add project

Public repository of ecological connectivity projects

Displaying 80 Projects

Show 25 **♦**

Search projects...

naturaconnect.idiv.de/projects/

All Projects / << Previous / Project ID 2 / Next >>

Conservation of connectivity in the West Carpathians for large carnivores

Urban and periurban

Acronym: N/A

Friends of the Earth Czech Republic

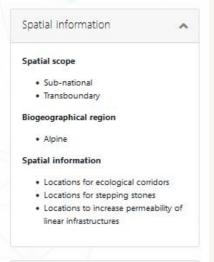
Other participating institution(s): Czech University of Life Sciences; Mendel University in Brno

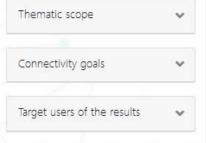
Grasslands Agricultural areas

Country or countries of application: Czech Republic, Slovakia

The project is aimed on conservation of large carnivore populations in the edge of their western distribution in the Carpathians. Activities contain detailed monitoring of wolf, lynx and bear population density and other demographic parameters, research of movements across urbanized landscape, identification of critical sections of wildlife corridors, dealing with local authorities, participation in decision making processes and spatial planning, and in some cases also practical realization of wildlife corridors (e.g. planting of forest patches as stepping stones in wildlife corridors).

Website

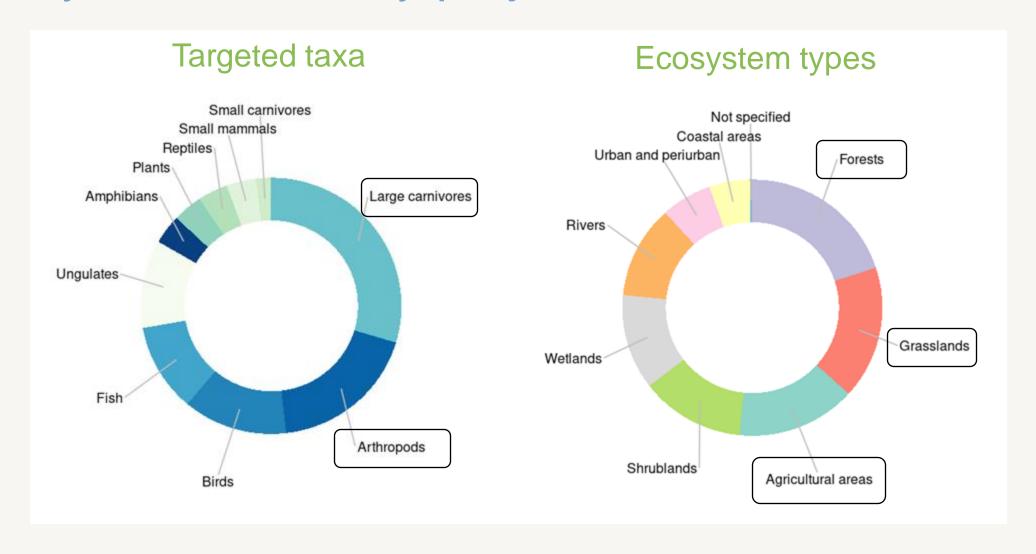

Funding sources


Approaches for assessing connectivity

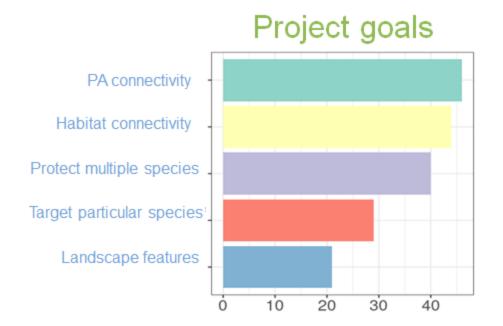
- · Nature conservation funds from National and/or Regional administrations
- . Development funds from National and/or Regional administrations
- . European funds associated to other sustainability policies
- · Private funds
- · Private funds

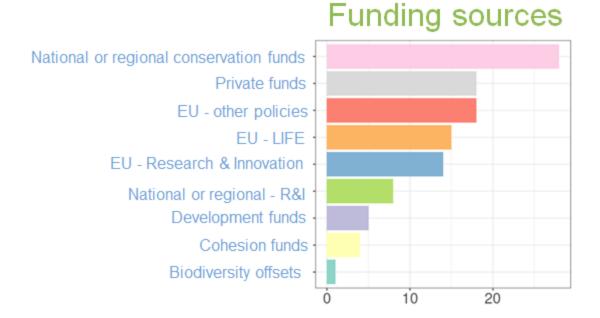
Name of funding programme(s): N/A

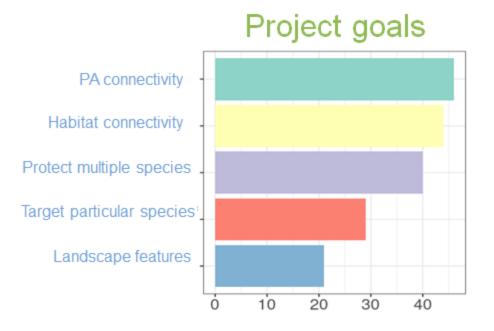
Temporal information Start - End Duration 2008 - 2024 16 years

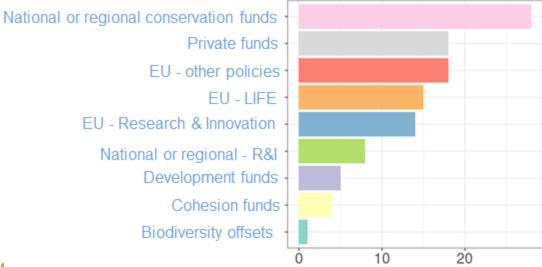


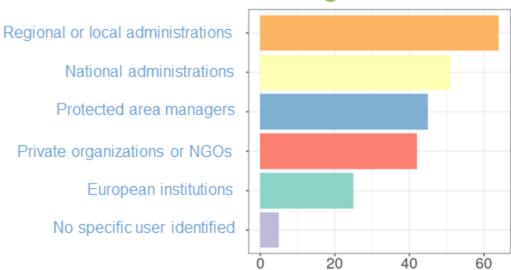
Policy support









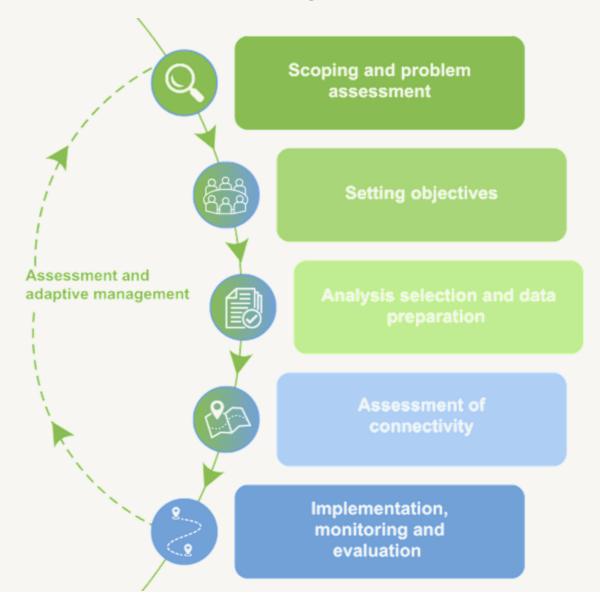


Funding sources

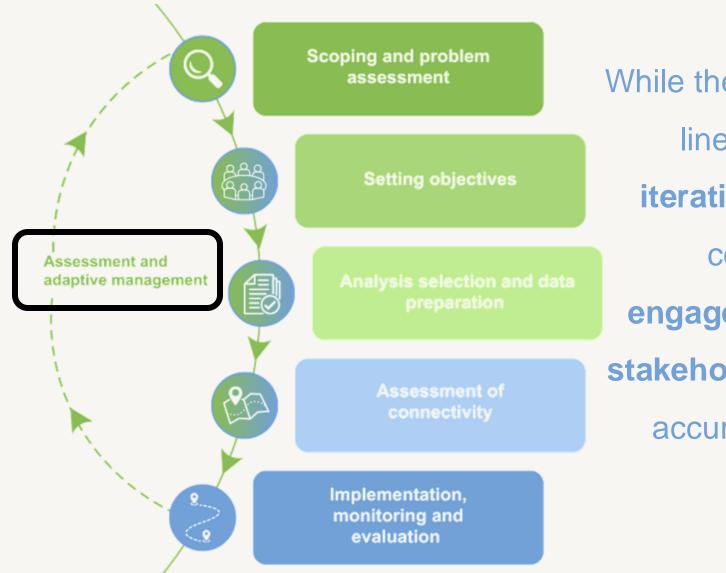
- i. Least-cost path and resistance kernels
- ii. Graph theory
- iii. Circuit theory
- iv. Agent based models
- v. Structural connectivity metrics and moving windows analysis
- vi. Assessing ecosystem services

- The most common modelling families for functional and structural connectivity
 (Table 5.1 in the guidelines)
- List is not exhaustivebut demonstratessome of thepossibilities with thesemodels

Model Family	Data Needs	Applications	Software & Packages
Least-cost Path & Resistant Kernels	Resistance surface, focal nodes, and species dispersal data (RK)	Focal species corridors, population dispersal potential, area of potential use, pollinator movement, probability of human movement	LCP: ArcGIS Tools, QGIS plugin, R packages ('gdistance', 'leastcostpath'); RK: UNICOR
Graph Theory	Focal nodes & connection file of attributes between node pairs	Analysis of landscape structure and potential functionality, prioritisation of patches and connections, long-term population persistence	Conefor, ArcPro Network Analyst, R packages ('iGraph', 'riverconn')
Circuit Theory	Resistance surface & focal nodes (Circuitscape) or source weight surface (Omni)	Focal species connectivity and pinch points, water flow, pollinator movement, invasive species control	Circuitscape, GFlow, Omniscape, Linkage Mapper (multi-family)
Agent-based models	Model specific: Focal node and network data, survival rate, population growth rate, fecundity, node transition probabilities, resistance surface, etc.	Long-term population persistence, patch and connection importance, source-sink analysis	MetaIPM, HexSIM, NetLogo, R packages ('p SiMRiv')
Structural Connectivity Metrics	(Will differ depending on the used metric(s)) Number of patches, patch size(s), boundaries and perimeter, distance between patches, focal nodes, presence/absence of links, number of paths.	Assessing connectivity of select components in the physical landscape, e.g. protected areas, specific habitats and/or corridors. Both in relation to intra- and interpatch connectivity.	Conefor, ArcPro Network Analyst, R packages ('iGraph', 'riverconn', 'gdistance')
Spatial prioritisation tools	Study area planning units layer, biodiversity distributions, land cover/land use, current protected areas, etc.	Identifying structural connectivity via prioritisation of landscape elements and systematic conservation planning	Marxan, Zonation, R packages ('prioritizr')



Geospatial data sources for Europe


Sector	Data Source Name	Author	Authoring organization	Data location
Land use & Land cover	CORINE Land Cover	Copernicus	Copernicus-European Environment Agency	https://land.copernicus.eu/en/products/corine-land-cover
	High Resolution Layer Water and Wetness	Copernicus	Copernicus-European Environment Agency	https://land.copernicus.eu/en/products/high-resolution-layer- water-and-wetness
	Global Tree Cover 2010	Hansen, M.C. et al.	Global Forest Watch	https://glad.umd.edu/dataset/global-2010-tree-cover-30-m
	Forest management map for Europe	Oostdijk, Saskia et al.	Vrije Universiteit Amsterdam	https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/HQIJN5
	Primary forest	Sabatini et al.	Nature	https://www.nature.com/articles/s41597-021-00988-7#Sec7
Roads & Linear Features	Open Street Map	Open Street Map	Open Street Map	https://www.openstreetmap.org
	EU Hydro Rivernet	Copernicus	Copernicus-European Environment Agency	https://land.copernicus.eu/en/products/eu-hydro/eu-hydro- river-network-database
Evaluation & Topography	European Digital Elevation Model (EU-DEM)	EEA	European Environment Agency	https://www.eea.europa.eu/en/datahub/datahubitem- view/d08852bc-7b5f-4835-a776- 08362e2fbf4b?activeAccordion=735550
	Copernicus Global DEM	ESA	European Space Agency	https://spacedata.copernicus.eu/collections/copernicus-digital- elevation-model
Boundaries & Bioregions	Biogeographical regions 2016	EEA	European Environment Agency	https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2
	EEA Administrative Boundaries based on GISCO NUTS and EBM	EEA	European Environment Agency	https://sdi.eea.europa.eu/catalogue/srv/eng/catalog.search#/metadata/94438969-2dd5-4ba3-b708-e4d29a8b7699
Species Data	Global Biodiversity Information Facility (GBIF)	GBIF	GBIF	https://www.gbif.org/
Protected Areas	European network of protected sites Natura 2000	EEA	European Environment Agency	https://www.eea.europa.eu/en/datahub/datahubitem- view/6fc8ad2d-195d-40f4-bdec-576e7d1268e4
	Nationally designated areas (CDDA)	EEA	European Environment Agency	https://www.eea.europa.eu/en/datahub/datahubitem- view/f60cec02-6494-4d08-b12d-17a37012cb28

While the framework is presented linearly, it should be an iterative process due to the continuous need to engage and collaborate with **stakeholders** to ensure the most accurate and useful plan is produced

Scoping and problem assessment

Identify all key stakeholders

Assess priorities, data gaps and management questions

Establish collaboration team

- Practitioners
- Scientific research
- Communication
- Policy makers

Assess threats, possible - actions and likely impacts

Assess priorities, data gaps and management questions

Set general spatial extent

Setting objectives

Define specific objectives and targets

Assess priorities, data gaps and management questions

General objective requirements

- Appropriate corridor width
- Structural configuration requirements

Final spatial extent and resolution of the analysis

Analysis selection and data preparation

Identify appropriate connectivity model or metric

Land use - patterns

Potential barriers -

- Dam locations
- Linear infrastructure
- Major water features

Connectivity opportunities

- Existing habitat patches
- Potential & existing movement corridors
- Natural features
- Cultural features

Stakeholder engagement

Acquire expert knowledge on missing features

Assessment of connectivity

Conduct connectivity analysis

Prioritize corridors & stepping stones for conservation or restoration

- Corridor width & configuration
- Assess fine-scale conditions in proposed corridors

Present draft results to stakeholders

Iterate new models after comments

Implementation, monitoring and evaluation

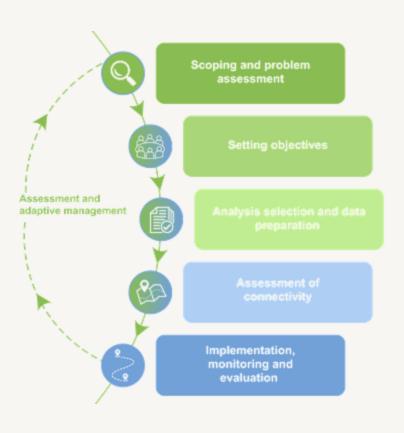
Organisational roles & responsibilities

Establishment of landscape designations

Land management

- Habitat restoration
- Human use & development

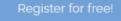
Monitoring & evaluation


- Species movements
- Evaluating indicators

While the landscape characteristics, focal species or conservation objectives of each connectivity project can be different, these steps provide a foundation for designing a connectivity network that may effectively facilitate ecological connectivity

Which topics do you find important to be included in practical Guidelines?

What would you like to see included in the NaturaConnect Learning Platform?



The NaturaConnect Learning Platform

Welcome to the NaturaConnect Learning Platform.

This is the capacity building hub of the NaturaConnect project. Here, you find different training modules created by project partners that help to improve professional capacity to design and implement the Trans-European Nature Network (TEN-N).

NaturaConnect Training Course

Organised in 3 sections with 11 modules.

Section 1 - Concepts

5 modules of background information.

Section 2 - Governance

2 modules of processes and instruments.

Section 3 - Technical Tools

4 modules of project outcomes.

Project websites and platforms

Links to external project resources.

<u>europeannatureacademy.</u> <u>com/course/naturaconnect</u>

The NaturaConnect **Learning Platform**

https://tinyurl.com/ENA-NC

This self-paced course includes sequential and stand-alone modules aiming to improve conservation planning. The materials and activities empower users to utilise the NaturaConnect outcomes and effectively create stakeholder engagement across various scales. Amongst other topics, participants can learn about the policy context of the TEN-N, comprehend specific tools and methods used in spatial conservation planning, and be enabled to apply them in various contexts.

Background information.

Modules

EUROPEAN NATURE

- 1.1. Trans-European Nature Network (TEN-N)
- 1.2. Cross-sectoral Policy Frameworks
- 1.3. Nature Futures Framework (NFF)
- 1.4. Connectivity Conservation
- 1.5. Integrated Spatial Planning

Section 2 - Governance

Processes and instruments.

Modules

- 2.1. Stakeholder Engagement
- 2.2 Financial Instruments

Project outcomes.

Modules

- 3.1. Biodiversity Modelling
- 3.2. Scenarios on Land Use and Climate Change
- 3.3. Connectivity Analyses
- 3.4. Spatial Planning for Protected and Restoration Areas

More info

naturaconnect.eu

Thank you! Questions? Comments?

Join the NaturaConnect Stakeholder community

naturaconnect.eu/ stakeholder-community/

ana.ceia.hasse@cibio.up.pt

